If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2=33
We move all terms to the left:
7x^2-(33)=0
a = 7; b = 0; c = -33;
Δ = b2-4ac
Δ = 02-4·7·(-33)
Δ = 924
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{924}=\sqrt{4*231}=\sqrt{4}*\sqrt{231}=2\sqrt{231}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{231}}{2*7}=\frac{0-2\sqrt{231}}{14} =-\frac{2\sqrt{231}}{14} =-\frac{\sqrt{231}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{231}}{2*7}=\frac{0+2\sqrt{231}}{14} =\frac{2\sqrt{231}}{14} =\frac{\sqrt{231}}{7} $
| 2y=4×-6 | | 3k2+k-2=0 | | x+30+134+x+16+126+161+x-12=1080 | | 3x+1-3x=162 | | 11=5*(2+x) | | 2(2+x)-(6-7x)=13x-(1+5x) | | 3x^2*4x=132 | | 5^x=328 | | (x+7)×5=55 | | 25^{2x}=125^{-x+1} | | 6x-36=(x-6) | | X-6=x/1.4 | | 11y-100=y+100 | | (2x-1)(x=4)=0 | | X°+(x-20)°-(x-40)°=180 | | |3x+1|=3 | | 2x-20-x-40=180 | | 10x2+68x=14 | | 5^4x-1=3^2x-1 | | 3p+20=4p-18 | | 158-x=4 | | √3x+18−5=2 | | 3(x+1)-(x-2)=x+5 | | 15+7y=(-25+7y) | | 3(x+5)=8x+1 | | x+1/2=x−1/2 | | 1÷100–x+1÷x=1÷21 | | 11x+4(3x-12)=-14 | | (3/5)z+1=25/9 | | -(-6/2)x-2(-44x+22)+(-22x-15)=-5(56+14x) | | X-6=1.4x | | 9-2x=-7(x-7) |